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Review of discrete probability

Random variable
A random variable assigns a probability to a numerical outcome.

Expected value E (x)
E (x) = x1 · P(x1) + x2 · P(x2) + ...+ xnP(xn) =

∑n
i=1 xiP(xi).

Variance V (x)

V (x) = (x1 − µ)2 · P(x1) + (x2 − µ)2 · P(x2) + ...+ (xn − µ)2P(xn)

=
n∑

i=1
(xi − µ)2P(xi)

σx =
√

V (x)
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Continuous random variables

Random continuous variable
A random continuous variable x assigns a probability to a range of
numerical outcomes [min,max ] on the real number line.

Probability density function (PDF)
A random continuous variable is described by the nonnegative
continuous function f such that∫ max

min
f (x) dx = 1 and P(a ≤ x ≤ b) =

∫ b

a
f (x) dx

Example: f (x) = x3 − 2x2 + x
Integrate: 6[ x4

4 −
2x3

3 + x2

2 ] = 6(1
4 −

2
3 + 1

2) = 1
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2.5 Continuous distributions (special topic)

 Example 2.88 Figure 2.26 shows a few di↵erent hollow histograms of the variable
height for 3 million US adults from the mid-90’s.58 How does changing the number
of bins allow you to make di↵erent interpretations of the data?

Adding more bins provides greater detail. This sample is extremely large, which
is why much smaller bins still work well. Usually we do not use so many bins with
smaller sample sizes since small counts per bin mean the bin heights are very volatile.
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Figure 2.26: Four hollow histograms of US adults heights with varying bin
widths.

 Example 2.89 What proportion of the sample is between 180 cm and 185 cm tall
(about 5’11” to 6’1”)?

We can add up the heights of the bins in the range 180 cm and 185 and divide by
the sample size. For instance, this can be done with the two shaded bins shown in
Figure 2.27. The two bins in this region have counts of 195,307 and 156,239 people,
resulting in the following estimate of the probability:

195307 + 156239

3,000,000
= 0.1172

This fraction is the same as the proportion of the histogram’s area that falls in the
range 180 to 185 cm.

58This sample can be considered a simple random sample from the US population. It relies on the USDA
Food Commodity Intake Database.

Source: Diez et al. 2011
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height (cm)
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Figure 2.27: A histogram with bin sizes of 2.5 cm. The shaded region
represents individuals with heights between 180 and 185 cm.

2.5.1 From histograms to continuous distributions

Examine the transition from a boxy hollow histogram in the top-left of Figure 2.26 to the
much smoother plot in the lower-right. In this last plot, the bins are so slim that the hollow
histogram is starting to resemble a smooth curve. This suggests the population height as
a continuous numerical variable might best be explained by a curve that represents the
outline of extremely slim bins.

This smooth curve represents a probability density function (also called a density
or distribution), and such a curve is shown in Figure 2.28 overlaid on a histogram of the
sample. A density has a special property: the total area under the density’s curve is 1.

height (cm)
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Figure 2.28: The continuous probability distribution of heights for US
adults. ∫ max

min
f (x)dx = 1
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height (cm)
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Figure 2.29: Density for heights in the US adult population with the area
between 180 and 185 cm shaded. Compare this plot with Figure 2.27.

2.5.2 Probabilities from continuous distributions

We computed the proportion of individuals with heights 180 to 185 cm in Example 2.89
as a fraction:

number of people between 180 and 185

total sample size

We found the number of people with heights between 180 and 185 cm by determining the
fraction of the histogram’s area in this region. Similarly, we can use the area in the shaded
region under the curve to find a probability (with the help of a computer):

P (height between 180 and 185) = area between 180 and 185 = 0.1157

The probability that a randomly selected person is between 180 and 185 cm is 0.1157. This
is very close to the estimate from Example 2.89: 0.1172.

J
Exercise 2.90 Three US adults are randomly selected. The probability a single
adult is between 180 and 185 cm is 0.1157.59

(a) What is the probability that all three are between 180 and 185 cm tall?

(b) What is the probability that none are between 180 and 185 cm?

 Example 2.91 What is the probability that a randomly selected person is exactly
180 cm? Assume you can measure perfectly.

This probability is zero. A person might be close to 180 cm, but not exactly 180 cm
tall. This also makes sense with the definition of probability as area; there is no area
captured between 180 cm and 180 cm.

J
Exercise 2.92 Suppose a person’s height is rounded to the nearest centimeter. Is
there a chance that a random person’s measured height will be 180 cm?60

59Brief answers: (a) 0.1157 ⇥ 0.1157 ⇥ 0.1157 = 0.0015. (b) (1 � 0.1157)3 = 0.692
60This has positive probability. Anyone between 179.5 cm and 180.5 cm will have a measured height

of 180 cm. This is probably a more realistic scenario to encounter in practice versus Example 2.91.

P(180 ≤ x ≤ 185)

Source: Diez et al. 2011



Normal distribution

The normal distribution is a symmetric, unimodal distribution.
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3.1.1 Normal distribution model

The normal distribution model always describes a symmetric, unimodal, bell shaped curve.
However, these curves can look di↵erent depending on the details of the model. Specifically,
the normal distribution model can be adjusted using two parameters: mean and standard
deviation. As you can probably guess, changing the mean shifts the bell curve to the left or
right, while changing the standard deviation stretches or constricts the curve. Figure 3.2
shows the normal distribution with mean 0 and standard deviation 1 in the left panel
and the normal distributions with mean 19 and standard deviation 4 in the right panel.
Figure 3.3 shows these distributions on the same axis.

−3 −2 −1 0 1 2 3
Y

7 11 15 19 23 27 31

Figure 3.2: Both curves represent the normal distribution, however, they
di↵er in their center and spread. The normal distribution with mean 0 and
standard deviation 1 is called the standard normal distribution.

0 10 20 30

Figure 3.3: The normal models shown in Figure 3.2 but plotted together
and on the same scale.

If a normal distribution has mean µ and standard deviation �, we may write the
distribution as N(µ, �). The two distributions in Figure 3.3 can be written as

N(µ, �)
Normal dist.
with mean µ
& st. dev. �

N(µ = 0, � = 1) and N(µ = 19, � = 4)

Because the mean and standard deviation describe a normal distribution exactly, they are
called the distribution’s parameters.
J

Exercise 3.1 Write down the short-hand for a normal distribution with (a) mean 5
and standard deviation 3, (b) mean -100 and standard deviation 10, and (c) mean 2
and standard deviation 9.2

2(a) N(µ = 5, � = 3). (b) N(µ = �100, � = 10). (c) N(µ = 2, � = 9).

Notation N (µ, σ)

The standard normal distribution of mean 0 and standard deviation
1 is denoted N (0, 1), where µ and σ are the distribution parameters.

Source: Diez et al. 2011



Normal distribution

Standardised scores
The standardised score, or “Z-score”, of an observation x , is equal
to its distance from the mean divided by the standard deviation of
the distribution: Z = x−µ

σ .

Use of Z-scores

Determine how far an observation is from the mean
Determine how far an observation is from the distribution

Example
Body Mass Index in the United States, 2009 (Stata).



Probability of falling within |z | = {1, 2, 3}
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3.1.5 68-95-99.7 rule

Here, we present a useful rule of thumb for the probability of falling within 1, 2, and 3
standard deviations of the mean in the normal distribution. This will be useful in a wide
range of practical settings, especially when trying to make a quick estimate without a
calculator or Z table.

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

99.7%

95%

68%

Figure 3.9: Probabilities for falling within 1, 2, and 3 standard deviations
of the mean in a normal distribution.

J
Exercise 3.22 Use the Z table to confirm that about 68%, 95%, and 99.7% of
observations fall within 1, 2, and 3, standard deviations of the mean in the normal
distribution, respectively. For instance, first find the area that falls between Z = �1
and Z = 1, which should have an area of about 0.68. Similarly there should be an
area of about 0.95 between Z = �2 and Z = 2.17

It is possible for a normal random variable to fall 4, 5, or even more standard deviations
from the mean. However, these occurrences are very rare if the data are nearly normal. The
probability of being further than 4 standard deviations from the mean is about 1-in-30,000.
For 5 and 6 standard deviations, it is about 1-in-3.5 million and 1-in-1 billion, respectively.

J
Exercise 3.23 SAT scores closely follow the normal model with mean µ = 1500
and standard deviation � = 300. (a) About what percent of test takers score 900 to
2100? (b) What percent score between 1500 and 2100?18

3.2 Evaluating the normal approximation

Many processes can be well approximated by the normal distribution. We have already seen
two good examples: SAT scores and the heights of US adult males. While using a normal
model can be extremely convenient and helpful, it is important to remember normality is

17First draw the pictures. To find the area between Z = �1 and Z = 1, use the normal probability
table to determine the areas below Z = �1 and above Z = 1. Next verify the area between Z = �1 and
Z = 1 is about 0.68. Repeat this for Z = �2 to Z = 2 and also for Z = �3 to Z = 3.

18(a) 900 and 2100 represent two standard deviations above and below the mean, which means about
95% of test takers will score between 900 and 2100. (b) Since the normal model is symmetric, then half

of the test takers from part (a) ( 95%
2

= 47.5% of all test takers) will score 900 to 1500 while 47.5% score
between 1500 and 2100.

Source: Diez et al. 2011



Bernoulli distribution

Binary probabilistic events like successive coin flips (S = {0, 1}) are
called “Bernoulli trials” and follow a geometric distribution.

Notation of proportion p̂
For a sample series of Bernouilli trials, the estimated proportion of
success is denoted

p̂ =
n successes

N trials =
0+ 0+ 1+ 0+ 1+, ...,+0+ 1

N
The estimated proportion of failure is, conversely, q = 1− p.

Demonstration
Show that a Bernoulli variable has a mean (or expected value) of
µ = p and a standard deviation of σ =

√
p(1− p).



Geometric distribution

If p and 1− p are the probabilities of success and failure in a
Bernoulli trial, the underlying distribution has the following mean,
variance and standard deviation:
Geometric distribution

µ =
1
p σ2 =

1− p
p2 σ =

√
1− p

p

The probability of success after n trials is (1− p)n−1p and decreases
exponentially.

Exercise
Show the above by calculating the probability of finding a flatmate
if everyone you ask has a 30% chance to accept. How likely is it
that you will end with the first, second or third person you ask?



Solutions

Bernoulli variable

µ = E (x) = 0 · P(x = 0) + 1 · P(x = 1)
= 0(1− p) + p = p

σ2 = P(x = 0)(0− p)2 + P(x = 1)(1− p)2

= (1− p)p2 + p(1− p)2 = p(1− p)

Flatmate search
The first person accepts (success) with a probability of p = .3, so
the first trial fails 1− p = 1− .3 = 70% of the time.
The probability that the second person accepts is (1− .3)(.3), the
probability of the third (1− .3)(1− .3)(.3) and so on.
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Binomial distribution

When the Bernoulli trials are conducted simultaneously, the random
variable follows a binomial distribution.
Relationship to combinations
The probability of getting k successes out of n trials is equivalent to
drawing k elements from a sample space {0, 1} of n elements:(n

k
)
= n!

k! (n−k)!

Probability of a single success k out of n trials
pk(1− p)n−k

Binomial distribution
Probability of observing k successes in n independent trials:
P(trials) · P(single success) =

(n
r
)
pk(1− p)n−k
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Binomial distribution

Mean, variance and standard deviation
µ = np σ2 = np(1− p) σ =

√
np(1− p)

If 20% of people accept to donate $10 to charities when asked,
what is the probability of asking n = 4 people and getting
exactly $10 (single success)?
P(A = no) · P(B = no) · P(C = no) · P(D = donate) =
(.8)(.8)(.8)(.2) = (.8)3(.2) = (1− p)n−kpk

If 30% of smokers die from lung cancer, what is the likelihood
of none dying that way in a group of 3 random smokers?
Mean probability: µ = .3× 4 = 1.2 will die on average.
P(k = 0) =

(3
0
)
(.3)0(1− .3)3−0 = 3!

0! (3−0)!(.3)
0(.7)3

There is a 1× 1× (.7)3 ≈ 34% likelihood of none dying that way.
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Homework

Read Evans et al. 2012, ch. 4–5* for next week
and enjoy the rest of your day.

For next week, make sure that you know how to work out the
exercises shown in slides 7–8.

* http://www.ck12.org/book/
CK-12-Advanced-Probability-and-Statistics-Concepts/
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