Quantitative and Mathematical Methods Euro-American Campus · Sciences Po · Reims

Session 5 · Review

François Briatte Level 1 Groups

Applications .

2 [Derivatives](#page-12-0)

... and we will run again through examples from previous sessions.

Exponentials

Definition

 $y = b^x$ $b > 0$ and $b \neq 1$

Natural exponential base e

$$
e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \approx 2.718
$$

Logarithms

 $y = \log_b x$ such that $b^y = x$

Natural logarithm: $ln(x)$

 $y = ln(x)$ iff $e^y = x \quad x > 0$ $ln(1) = c$ such as $e^c = 1$, and $ln(e) = c$ such as $e^c = e$

Rules

 $\forall a, b \in \mathbb{R}$ and $x, y \in \mathbb{R}$, the following rules apply:

- Equality: $b^x = b^y$ iff $x = y$
- Power: $(b^x)^y = b^{xy}$
- Product: $b^{\times}b^{\times} = b^{\times + \times}$
- Quotient: $\frac{b^x}{b^y}$ $rac{b^x}{b^y} = b^{x-y}$
- Multiplication: $(ab)^x = a^x b^x$
- Division: $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$ $\overline{b^x}$

Session 3, Example 1: Population growth

Consider an initial population of 6.1 billion people at $P(0) = 2000$, and a constant annual growth rate of 1.4%. Find $P(t)$.

Session 3, Example 1: Population growth

Consider an initial population of 6.1 billion people at $P(0) = 2000$, and a constant annual growth rate of 1.4%. Find $P(t)$.

$$
P(0) = 6.1
$$

\n
$$
P(1) = P(0) \times 1.014
$$

\n
$$
= 6.1 \times (1.014)^{1}
$$

\n
$$
P(2) = P(1) \times 1.014 = [6.1 \times (1.014)] \times (1.014)
$$

\n
$$
= 6.1 \times (1.014)^{2}
$$

\n
$$
P(3) = 6.1 \times (1.014)^{3}
$$

\n:
\n:
\n
$$
P(t) = 6.1 \times (1.014)^{t}
$$

Session 3, Example 2: Solving exponentials

If a pricing function achieves $P(x) = 5^{x^2+2x}$, find all values of x such that $P(x) = 125$.

Session 3, Example 2: Solving exponentials

If a pricing function achieves $P(x) = 5^{x^2+2x}$, find all values of x such that $P(x) = 125$.

The equation is satisfied iff $5^{x^2+2x} = 5^3$. Since $b^x = b^y$ iff $x = y$:

$$
x2 + 2x = 3
$$

$$
x2 + 2x - 3 = 0
$$

$$
(x - 1)(x + 3) = 0
$$

$$
\rightarrow
$$
 P(x) = 125 iff x = +1, x = -3.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

Solving A :
$$
Q(0) = 15 \rightarrow Ae^0 = A = 15
$$

\nSolving k : $Q(10) = 9 \rightarrow 9 = 15e^{-10k} \rightarrow \frac{3}{5} = e^{-10k}$
\n $\ln \frac{3}{5} = -10k \rightarrow k = -\frac{\ln 3/5}{10} \approx .05$

Exponential function for population density: $Q(x) = 15e^{-0.05x}$.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

Solving A :
$$
Q(0) = 15 \rightarrow Ae^0 = A = 15
$$

\nSolving k : $Q(10) = 9 \rightarrow 9 = 15e^{-10k} \rightarrow \frac{3}{5} = e^{-10k}$
\n $\ln \frac{3}{5} = -10k \rightarrow k = -\frac{\ln 3/5}{10} \approx .05$

Exponential function for population density: $Q(x) = 15e^{-0.05x}$.

Derivatives

Formula:

The derivative of $f(x)$ is the function $f'(x) = lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ $\frac{n(n-1)}{n}$.

Slope of a tangent:

The point $(c, f(c))$ at $m_{tan} = f'(c)$ is the slope of the tangent line to the curve $y = f(x)$ at c.

Significance of the sign:

- $f(x)$ is increasing at $x = c$ if $f'(c) > 0$
- • $f(x)$ is decreasing at $x = c$ if $f'(c) < 0$

Rules

Constant rule:

$$
\frac{d}{dx}[c] = 0 \quad \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0 \text{ if } f(x) = c
$$

Power rule:

$$
\tfrac{d}{dx}[x^n] = nx^{n-1}
$$

Constant multiple rule:

$$
\frac{d}{dx}[cf(x)]=c\frac{d}{dx}f(x)
$$

Sum rule:

$$
\frac{d}{dx}[f(x)+g(x)]=\frac{d}{dx}f(x)+\frac{d}{dx}g(x)
$$

More rules

Product rule:

$$
\frac{d}{dx}[f(x)g(x)] = f(x) \cdot \frac{d}{dx}[g(x)] + g(x) \cdot \frac{d}{dx}[f(x)]
$$
\nor equivalently: $(fg)' = fg' + gf'$

Quotient rule:

$$
\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}
$$

Second derivative

 $f''(x) = \frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ is the *second derivative* of $f'(x)$. The derivative of order *n* is denoted $f^{(n)}(x)$.

Chain rule

If
$$
y = f(u)
$$
 and $u = g(x)$, then $f(g(x)) = \frac{dy}{dx} = f'(g(x))g'(x)$

Session 4, Example 2: Population growth

Consider a population for which the growth function is $P(t) = t^2 + 20t + 8{,}000$ million people per year. Find the growth rate at $t = 10$ and $t = 11$, and the actual change in population at $t = 11$.

Session 4, Example 2: Population growth

Consider a population for which the growth function is $P(t) = t^2 + 20t + 8{,}000$ million people per year. Find the growth rate at $t = 10$ and $t = 11$, and the actual change in population at $t = 11$.

$$
P'(t) = 2t + 20
$$

\n
$$
P'(10) = 2(10) + 20 = 40 \text{ people/year at } t = 10
$$

\n
$$
P'(11) = 2(11) + 20 = 42 \text{ people/year at } t = 11
$$

\n
$$
P(10) = 100 + 200 + 8,000
$$

\n
$$
P(11) = 121 + 220 + 8,000
$$

\n
$$
P(11) - P(10) = 41 \text{ people/year at } t = 11
$$

Application to population growth (continued)

Find the equations of the tangents at $t = 10$ and $t = 11$.

Application to population growth (continued)

Find the equations of the tangents at $t = 10$ and $t = 11$.

 $P'(10) = 2(10) + 20 = 40$ at $t = 10$, $y - f(10) = 10^2 + 20(10) + 8$, 000 = 8, 300 = 40(x - 10) $y = 40x - 400 + 8$, 300 = $40x + 7$, 900 $P'(11) = 2(11) + 20 = 42$ at $t = 11$, $y - f(11) = 11^2 + 20(11) + 8$, 000 = 8, 341 = 42(x - 11) $y = 42x - 462 + 8$, $341 = 42x + 7$, 879

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

> $N'(t) = 2t + 5$ $N'(10) = 2(10) + 5 = 25$ billion dollars at $t = 10$

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

$$
N'(t) = 2t + 5
$$

N'(10) = 2(10) + 5 = 25 billion dollars at $t = 10$

What is the **relative** growth rate of GDP in that same year?

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

$$
N'(t) = 2t + 5
$$

N'(10) = 2(10) + 5 = 25 billion dollars at $t = 10$

What is the **relative** growth rate of GDP in that same year?

At $t = 10$, $N(10) = 100 + 50 + 101 = 251$ and $N'(10) = 25$.

The relative growth rate $\frac{Q'(x)}{Q(x)} = \frac{dQ/dx}{Q}$ $\frac{2}{\sqrt{a}}$ is $\frac{25}{251} \approx 10\%$ per year in that period.

If a worker has a unit productivity function of

 $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of $Q(t)$.

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of $Q(t)$. At $t=3$, $R(3)=Q'(3)=-3(3)^2+12(3)+24=33$ units/hour.

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of $Q(t)$. At $t=3$, $R(3)=Q'(3)=-3(3)^2+12(3)+24=33$ units/hour. The change in the rate of production is $R'(t) = Q''(t) = -6t + 12.$

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of $Q(t)$. At $t=3$, $R(3)=Q'(3)=-3(3)^2+12(3)+24=33$ units/hour. The change in the rate of production is $R'(t) = Q''(t) = -6t + 12.$ At $t = 3$, $R'(3) = Q''(3) = -6(3) + 12 = -6$ units/hour.

It might be a good idea to offer the worker a lunch break at that point.