Quantitative and Mathematical Methods Euro-American Campus · Sciences Po · Reims

Session 5 · Review

François Briatte Level 1 Groups

Applications

2 Derivatives

... and we will run again through examples from previous sessions.

Exponentials

Definition

 $y = b^x$ b > 0 and $b \neq 1$

Natural exponential base e

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \approx 2.718$$

Logarithms

 $y = \log_b x$ such that $b^y = x$

Natural logarithm: ln(x)

y = ln(x) iff $e^y = x$ x > 0ln(1) = c such as $e^c = 1$, and ln(e) = c such as $e^c = e$

Rules

 $\forall a, b \in \mathbb{R}+ \text{ and } x, y \in \mathbb{R}$, the following rules apply:

- Equality: $b^x = b^y$ iff x = y
- Power: $(b^{x})^{y} = b^{xy}$
- Product: $b^x b^y = b^{x+y}$
- Quotient: $\frac{b^x}{b^y} = b^{x-y}$
- Multiplication: $(ab)^{\times} = a^{\times}b^{\times}$
- Division: $(\frac{a}{b})^{x} = \frac{a^{x}}{b^{x}}$

Session 3, Example 1: Population growth

Consider an initial population of 6.1 billion people at P(0) = 2000, and a constant annual growth rate of 1.4%. Find P(t).

Session 3, Example 1: Population growth

Consider an initial population of 6.1 billion people at P(0) = 2000, and a constant annual growth rate of 1.4%. Find P(t).

$$P(0) = 6.1$$

$$P(1) = P(0) \times 1.014$$

$$= 6.1 \times (1.014)^{1}$$

$$P(2) = P(1) \times 1.014 = [6.1 \times (1.014)] \times (1.014)$$

$$= 6.1 \times (1.014)^{2}$$

$$P(3) = 6.1 \times (1.014)^{3}$$

$$\vdots$$

$$P(t) = 6.1 \times (1.014)^{t}$$

Session 3, Example 2: Solving exponentials

If a pricing function achieves $P(x) = 5^{x^2+2x}$, find all values of x such that P(x) = 125.

Session 3, Example 2: Solving exponentials

If a pricing function achieves $P(x) = 5^{x^2+2x}$, find all values of x such that P(x) = 125.

The equation is satisfied iff $5^{x^2+2x} = 5^3$. Since $b^x = b^y$ iff x = y:

$$x^{2} + 2x = 3$$

 $x^{2} + 2x - 3 = 0$
 $(x - 1)(x + 3) = 0$

$$\rightarrow P(x) = 125$$
 iff $x = +1, x = -3$.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

Solving
$$A: Q(0) = 15 \rightarrow Ae^0 = A = 15$$

Solving $k: Q(10) = 9 \rightarrow 9 = 15e^{-10k} \rightarrow \frac{3}{5} = e^{-10k}$
 $\ln \frac{3}{5} = -10k \rightarrow k = -\frac{\ln 3/5}{10} \approx .05$

Exponential function for population density: $Q(x) = 15e^{-.05x}$.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

Solving
$$A: Q(0) = 15 \rightarrow Ae^0 = A = 15$$

Solving $k: Q(10) = 9 \rightarrow 9 = 15e^{-10k} \rightarrow \frac{3}{5} = e^{-10k}$
 $\ln \frac{3}{5} = -10k \rightarrow k = -\frac{\ln 3/5}{10} \approx .05$

Exponential function for population density: $Q(x) = 15e^{-.05x}$.

Derivatives

Formula:

The derivative of f(x) is the function $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

Slope of a tangent:

The point (c, f(c)) at $m_{tan} = f'(c)$ is the slope of the tangent line to the curve y = f(x) at c.

Significance of the sign:

- f(x) is increasing at x = c if f'(c) > 0
- f(x) is decreasing at x = c if f'(c) < 0

Rules

Constant rule:

$$\frac{d}{dx}[c] = 0 \quad \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0 \text{ if } f(x) = c$$

Power rule:

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

Constant multiple rule:

$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$$

Sum rule:

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

More rules

Product rule:

$$\frac{d}{dx}[f(x)g(x)] = f(x) \cdot \frac{d}{dx}[g(x)] + g(x) \cdot \frac{d}{dx}[f(x)]$$

or equivalently: $(fg)' = fg' + gf'$

Quotient rule:

$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$

Second derivative

 $f''(x) = \frac{d^2y}{dx^2}$ is the second derivative of f'(x). The derivative of order *n* is denoted $f^{(n)}(x)$.

Chain rule

If
$$y = f(u)$$
 and $u = g(x)$, then $f(g(x)) = \frac{dy}{dx} = f'(g(x))g'(x)$

Session 4, Example 2: Population growth

Consider a population for which the growth function is $P(t) = t^2 + 20t + 8,000$ million people per year. Find the growth rate at t = 10 and t = 11, and the actual change in population at t = 11.

Session 4, Example 2: Population growth

Consider a population for which the growth function is $P(t) = t^2 + 20t + 8,000$ million people per year. Find the growth rate at t = 10 and t = 11, and the actual change in population at t = 11.

$$P'(t) = 2t + 20$$

$$P'(10) = 2(10) + 20 = 40 \text{ people/year at } t = 10$$

$$P'(11) = 2(11) + 20 = 42 \text{ people/year at } t = 11$$

$$P(10) = 100 + 200 + 8,000$$

$$P(11) = 121 + 220 + 8,000$$

$$P(11) - P(10) = 41 \text{ people/year at } t = 11$$

Application to population growth (continued)

Find the equations of the tangents at t = 10 and t = 11.

Application to population growth (continued)

Find the equations of the tangents at t = 10 and t = 11.

P'(10) = 2(10) + 20 = 40at t = 10, $y - f(10) = 10^2 + 20(10) + 8,000 = 8,300 = 40(x - 10)$ y = 40x - 400 + 8,300 = 40x + 7,900P'(11) = 2(11) + 20 = 42at t = 11, $y - f(11) = 11^2 + 20(11) + 8,000 = 8,341 = 42(x - 11)$ y = 42x - 462 + 8,341 = 42x + 7,879

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

N'(t) = 2t + 5N'(10) = 2(10) + 5 = 25 billion dollars at t = 10

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

$$N'(t) = 2t + 5$$

 $N'(10) = 2(10) + 5 = 25$ billion dollars at $t = 10$

What is the **relative** growth rate of GDP in that same year?

Consider a country with a GDP growth rate equal to $N(t) = t^2 + 5t + 101$, with $t_0 = 1998$. What is its GDP growth rate in 2008?

$$N'(t) = 2t + 5$$

 $N'(10) = 2(10) + 5 = 25$ billion dollars at $t = 10$

What is the relative growth rate of GDP in that same year?

At t = 10, N(10) = 100 + 50 + 101 = 251 and N'(10) = 25.

The relative growth rate $\frac{Q'(x)}{Q(x)} = \frac{dQ/dx}{Q}$ is $\frac{25}{251} \approx 10\%$ per year in that period.

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of Q(t).

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of Q(t). At t = 3, $R(3) = Q'(3) = -3(3)^2 + 12(3) + 24 = 33$ units/hour.

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of Q(t). At t = 3, $R(3) = Q'(3) = -3(3)^2 + 12(3) + 24 = 33$ units/hour. The change in the rate of production is R'(t) = Q''(t) = -6t + 12.

If a worker has a unit productivity function of $Q(t) = -t^3 + 6t^2 + 24t$ at 8am, what is his unit productivity at 11am, and at what rate is it changing by that time?

Rate of production: $R(t) = Q'(t) = -3t^2 + 12t + 24$ of Q(t). At t = 3, $R(3) = Q'(3) = -3(3)^2 + 12(3) + 24 = 33$ units/hour. The change in the rate of production is R'(t) = Q''(t) = -6t + 12. At t = 3, R'(3) = Q''(3) = -6(3) + 12 = -6 units/hour.

It might be a good idea to offer the worker a lunch break at that point.