Quantitative and Mathematical Methods Euro-American Campus · Sciences Po · Reims

Session 3 · Exponentials

François Briatte Level 1 Groups

Table of contents

Today: powers, exponentials, logarithms.

Examples:

Example 1: Population growth

Consider an initial population of 6.1 billion people at $P(0) = 2000$, and a constant annual growth rate of 1.4%. Find $P(t)$.

Example 1: Population growth \Box

Consider an initial population of 6.1 billion people at $P(0) = 2000$, and a constant annual growth rate of 1.4%. Find $P(t)$.

$$
P(0) = 6.1
$$

\n
$$
P(1) = P(0) \times 1.014
$$

\n
$$
= 6.1 \times (1.014)^{1}
$$

\n
$$
P(2) = P(1) \times 1.014 = [6.1 \times (1.014)] \times (1.014)
$$

\n
$$
= 6.1 \times (1.014)^{2}
$$

\n
$$
P(3) = 6.1 \times (1.014)^{3}
$$

\n:
\n:
\n
$$
P(t) = 6.1 \times (1.014)^{t}
$$

Power functions

Integer powers

If $k \in \mathbb{Z}^+, p(x, k) = x^k$ k is the exponent. e.g. $2^3 = 2 \times 2 \times 2 = 8$

Power functions

Integer powers

If
$$
k \in \mathbb{Z}^+
$$
, $p(x, k) = x^k$ k is the exponent.
e.g. $2^3 = 2 \times 2 \times 2 = 8$

Fractional powers

If $n, m \in \mathbb{Z}^+, x^{\frac{n}{m}} = (\sqrt[m]{x})^n$ $\sqrt[m]{x}$ is the positive *m*-th root of x. e.g. $4^{\frac{1}{2}} = (\sqrt[2]{4})^1 = \sqrt{4}$ $4 = 2$ e.g. $4^{\frac{3}{2}} = (\sqrt[2]{4})^3 = 2^3 = 8$

Power functions

Integer powers

If
$$
k \in \mathbb{Z}^+
$$
, $p(x, k) = x^k$ k is the exponent.
e.g. $2^3 = 2 \times 2 \times 2 = 8$

Fractional powers

If
$$
n, m \in \mathbb{Z}^+, x^{\frac{n}{m}} = (\sqrt[m]{x})^n
$$
 $\sqrt[m]{x}$ is the positive *m*-th root of *x*.
\ne.g. $4^{\frac{1}{2}} = (\sqrt[2]{4})^1 = \sqrt{4} = 2$
\ne.g. $4^{\frac{3}{2}} = (\sqrt[2]{4})^3 = 2^3 = 8$

Negative and null powers

At negative powers, $x^{-k} = \frac{1}{x^k}$ $\overline{x^n}$ At zero power, $x^0 = 1$.

Exponential functions **Exponential**

If b is a positive number other than 1, there is a unique function called the exponential function with base b such that

$$
f(x) = b^x \quad \forall b \in \mathbb{R}^+, b \neq 1
$$

Exponential functions

If b is a positive number other than 1, there is a unique function called the **exponential** function with **base** b such that

$$
f(x) = b^x \quad \forall b \in \mathbb{R}^+, b \neq 1
$$

e.g. $y = 2^x$ $2^{-10} = .001$ $2^{-3} = .125$ $2^{-1} = .5$ $2^{0} = 1$ $2^{1} = 2$ $2^{3} = 8$ \rightarrow $f(x) = 2^x$ is always increasing

Exponential functions

If b is a positive number other than 1, there is a unique function called the exponential function with base b such that

$$
f(x) = b^x \quad \forall b \in \mathbb{R}^+, b \neq 1
$$

e.g. $v = 2^x$ $2^{-10} = .001$ $2^{-3} = .125$ $2^{-1} = .5$ $2^{0} = 1$ $2^{1} = 2$ $2^{3} = 8$ \rightarrow $f(x) = 2^x$ is always increasing

e.g. $y = (\frac{1}{2})^x$

 $\left(\frac{1}{2}\right)$ $(\frac{1}{2})^{-10} = 1,024 \quad (\frac{1}{2})^{-3} = 8 \quad (\frac{1}{2})^0 = 1 \quad \frac{1}{2}$ $2^2 = .25, \frac{1}{2}$ 2 $3 = .125$ \rightarrow $f(x)=(\frac{1}{2})^x$ is always decreasing

$y = b^x$ with $b > 1$

Exponential growth: $\lim_{x\to-\infty} f(x) = 0$ and $\lim_{x\to+\infty} f(x) = +\infty$

Note that x intercept = $\{\emptyset\}$, y intercept = 1.

$y = b^x$ with $0 < b < 1$

Exponential decay: $\lim_{x\to-\infty} f(x) = +\infty$ and $\lim_{x\to+\infty} f(x) = 0$

Note that x intercept = $\{\emptyset\}$, y intercept = 1.

Warning powers \neq exponentials

 $f(x) = b^x$ is an exponential function of base b $g(x)=x^b$ is power function of exponent b

If $b > 0$ and $b \neq 1$, $y = b^x$ is defined, continuous and positive for all x.

If $b > 0$ and $b \neq 1$, $y = b^x$ is defined, continuous and positive for all x. $\forall a, b \in \mathbb{R}$ + and $x, y \in \mathbb{R}$, the following rules apply:

• Equality:
$$
b^x = b^y
$$
 iff $x = y$

• Power:
$$
(b^x)^y = b^{xy}
$$

e.g. $(2^3)^2 = 2^{3 \cdot 2} = 64$

If $b > 0$ and $b \neq 1$, $y = b^x$ is defined, continuous and positive for all x. $\forall a, b \in \mathbb{R}$ + and x, $y \in \mathbb{R}$, the following rules apply:

• Equality: $b^x = b^y$ iff $x = y$

• Power:
$$
(b^x)^y = b^{xy}
$$

e.g. $(2^3)^2 = 2^{3 \cdot 2} = 64$

- Product: $b^{\times}b^{\times} = b^{\times+y}$
- Quotient: $\frac{b^x}{b^y}$ $rac{b^x}{b^y} = b^{x-y}$ e.g. $\frac{2^3}{2^5}$ $\frac{2^3}{2^5} = 2^{3-5} = 2^{-2} = \frac{1}{4}$ 4

If $b > 0$ and $b \neq 1$, $y = b^x$ is defined, continuous and positive for all x. $\forall a, b \in \mathbb{R}$ and x, $y \in \mathbb{R}$, the following rules apply:

• Equality: $b^x = b^y$ iff $x = y$

• Power:
$$
(b^x)^y = b^{xy}
$$

e.g. $(2^3)^2 = 2^{3 \cdot 2} = 64$

• Product: $b^{\times}b^{\times} = b^{\times+y}$

• Quotient:
$$
\frac{b^x}{b^y} = b^{x-y}
$$

e.g. $\frac{2^3}{2^5} = 2^{3-5} = 2^{-2} = \frac{1}{4}$

• Multiplication: $(ab)^x = a^x b^x$

• Division:
$$
\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}
$$

e.g. $\left(\frac{2}{5}\right)^3 = \frac{2^3}{5^3} = \frac{8}{125}$

Example 2: Solving exponentials

If $f(x) = 5^{x^2+2x}$, find all values of x such that $f(x) = 125$.

Example 2: Solving exponentials

If $f(x) = 5^{x^2+2x}$, find all values of x such that $f(x) = 125$.

The equation is satisfied iff $5^{x^2+2x} = 5^3$. Since $b^x = b^y$ iff $x = y$:

$$
x2 + 2x = 3
$$

$$
x2 + 2x - 3 = 0
$$

$$
(x - 1)(x + 3) = 0
$$

$$
\rightarrow
$$
 f(x) = 125 iff x = +1, x = -3.

Natural exponential base e

$$
f(x) = (1 + \frac{1}{x})^x
$$

$$
f(10) = 1.1^{10} \approx 2.59
$$

\n
$$
f(100) = 1.01^{100} \approx 2.70
$$

\n
$$
f(1000) = 1.001^{1000} \approx 2.71
$$

$$
e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \approx 2.71828182
$$

Natural exponential base e

$$
f(x) = (1 + \frac{1}{x})^x
$$

$$
f(10) = 1.1^{10} \qquad \qquad \approx 2.59
$$

$$
f(1000) = 1.001^{1000} \qquad \qquad \approx 2.71
$$

 $e = \lim_{x\to\infty} (1 + \frac{1}{x})^x \approx 2.71828182$

Natural exponential base e

$$
f(x) = (1 + \frac{1}{x})^x
$$

$$
f(10) = 1.1^{10} \approx 2.59
$$

\n
$$
f(100) = 1.01^{100} \approx 2.70
$$

\n
$$
f(1000) = 1.001^{1000} \approx 2.71
$$

$$
e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \approx 2.71828182
$$

Example 3a: Compound interest

Assume P is a sum invested at an annual interest rate of $r₁$.

The balance after compounding once is $B = P + P \cdot r = P(1 + r)$. If compounding occurs k times per year, then the interest rate is $\frac{r}{k}$. Find the annual balance function $B(t)$.

Example 3a: Compound interest

Assume P is a sum invested at an annual interest rate of $r₁$. The balance after compounding once is $B = P + P \cdot r = P(1 + r)$. If compounding occurs k times per year, then the interest rate is $\frac{r}{k}$. Find the annual balance function $B(t)$.

$$
P_1 = P_0 + P_0(\frac{r}{k}) = P_0(1 + \frac{r}{k})
$$

\n
$$
P_2 = P_1 + P_1(\frac{r}{k}) = P_1(1 + \frac{r}{k})
$$

\n
$$
= [P_0(1 + \frac{r}{k})](1 + \frac{r}{k}) = P_0(1 + \frac{r}{k})^2
$$

\n
$$
\rightarrow P(t) = P_0(1 + \frac{r}{k})^{kt}
$$

Example 3b: Continuous compound interest

$$
\rightarrow B(t) = P(1+\tfrac{r}{k})^{kt}
$$

What happens if k goes to infinity?

Example 3b: Continuous compound interest

$$
\rightarrow B(t) = P(1+\tfrac{r}{k})^{kt}
$$

What happens if k goes to infinity?

Let $k = nr$

$$
P(t) = P_0 \left(1 + \frac{r}{k}\right)^{kt}
$$

=
$$
P_0 \left(1 + \frac{r}{nr}\right)^{nrt} = P_0 \left[\left(1 + \frac{1}{n}\right)^n\right]^{rt}
$$

$$
\lim_{t \to \infty} P(t) = P_0 \left[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right]^{rt}
$$

$$
\to B(t) = Pe^{rt}
$$

Independently of k , the balance will never exceed Pe^{rt} .

Example 3c: Present value

 $\rightarrow B(t) = P(1+\frac{r}{k})^{kt}$

Assume that we know the future value $B(t)$ that we want to accumulate over time. How much do we need to invest at $t = 0$ to obtain $B(t)$?

Find P , i.e. the *present* value of B to be received in t years.

Example 3c: Present value

 $\rightarrow B(t) = P(1+\frac{r}{k})^{kt}$

Assume that we know the future value $B(t)$ that we want to accumulate over time. How much do we need to invest at $t = 0$ to obtain $B(t)$?

Find P , i.e. the *present* value of B to be received in t years.

$$
B(t) = P(1 + \frac{r}{k})^{kt}
$$

\n
$$
B(t)(1 + \frac{r}{k})^{-kt} = P(1 + \frac{r}{k})^{kt}(1 + \frac{r}{k})^{-kt}
$$

\nSince $b^{x}b^{y} = b^{x+y}, P = B(t)(1 + \frac{r}{k})^{-kt}$

If compounding is continuous, $B = Pe^{rt}$ and therefore $P = Be^{-rt}$.

Logarithmic functions

Exponential to the base b

$$
y = b^{x} \quad b > 0, b \neq 1
$$

e.g. $2^{3} = 8$
e.g. $10^{4} = 10,000$
e.g. $5^{-3} = \frac{1}{5^{3}} = \frac{1}{125}$

Logarithmic functions

Exponential to the base b

 $y = b^x$ $b > 0, b \neq 1$ e.g. $2^3 = 8$ e.g. $10^4 = 10,000$ e.g. $5^{-3} = \frac{1}{53}$ $\frac{1}{5^3} = \frac{1}{12}$ 125

Logarithm of x to the base b

 $y = \log_b x$ such that $b^y = x$ e.g. $log_2 8 = 3$ e.g. $log_{10} 10,000 = 4$ e.g. $log_5 \frac{1}{125} = -3$

$y = b^x$ with $b > 1$

Logarithms reverse the process of exponentiation, which allows to express products and quotients as sums and differences:

Let *b* be any logarithmic base $(b > 0, b \ne 1)$. Then $\log_b 1 = 0$ since $b^0 = 1$ and $\log_b b = 1$ since $b^1 = 0$.

Let *b* be any logarithmic base $(b > 0, b \ne 1)$. Then $\log_b 1 = 0$ since $b^0 = 1$ and $\log_b b = 1$ since $b^1 = 0$. The following rules apply if $x, y \in \mathbb{R}^+$:

• Equality: $\log_b x = \log_b^y$ iff $x = y$

• Power:
$$
\log_b x^k = k \log_b x \quad \forall k \in \mathbb{R}
$$
 e.g. $\log_5 8 = \log_5 2^3 = 3 \log_5 2$

Let b be any logarithmic base $(b > 0, b \ne 1)$. Then $\log_b 1 = 0$ since $b^0 = 1$ and $\log_b b = 1$ since $b^1 = 0$. The following rules apply if $x, y \in \mathbb{R}^+$:

- Equality: $\log_b x = \log_b^y$ iff $x = y$
- Power: $\log_b x^k = k \log_b x \quad \forall k \in \mathbb{R}$ e.g. $\log_5 8 = \log_5 2^3 = 3 \log_5 2$
- Product: $\log_b xy = \log_b x + \log_b y$
- Quotient: $\log_b \frac{x}{y} = \log_b x \log_b y$ e.g. $\log_2 \frac{7}{3} = \log_2 7 - \log_2 3$

Let b be any logarithmic base $(b > 0, b \ne 1)$. Then $\log_b 1 = 0$ since $b^0 = 1$ and $\log_b b = 1$ since $b^1 = 0$. The following rules apply if $x, y \in \mathbb{R}^+$:

- Equality: $\log_b x = \log_b^y$ iff $x = y$
- Power: $\log_b x^k = k \log_b x \quad \forall k \in \mathbb{R}$ e.g. $\log_5 8 = \log_5 2^3 = 3 \log_5 2$
- Product: $\log_b xy = \log_b x + \log_b y$
- Quotient: $\log_b \frac{x}{y} = \log_b x \log_b y$ e.g. $\log_2 \frac{7}{3} = \log_2 7 - \log_2 3$
- Inversion: $\log_b b^u = u$

Solve each of the following equations for x :

 $\log_4 x = \frac{1}{2}$ 2

Solve each of the following equations for x :

 $\log_4 x = \frac{1}{2}$ 2 1 √

$$
x = 4^{\frac{1}{2}} = \sqrt{4} = 2.
$$

Solve each of the following equations for x :

$$
\log_4 x = \frac{1}{2}
$$

$$
x = 4^{\frac{1}{2}} = \sqrt{4} = 2.
$$

$$
\log_x 27 = 3
$$

Solve each of the following equations for x :

 $\log_4 x = \frac{1}{2}$ 2 $x = 4^{\frac{1}{2}} =$ √ $4 = 2.$ $log_x 27 = 3$ $x^3 = 27 \rightarrow x = 27^{\frac{1}{3}} = \sqrt[3]{27} = 3.$

Solve each of the following equations for x :

 $\log_4 x = \frac{1}{2}$ 2 $x = 4^{\frac{1}{2}} =$ √ $4 = 2.$ $log_x 27 = 3$ $x^3 = 27 \rightarrow x = 27^{\frac{1}{3}} = \sqrt[3]{27} = 3.$ $log_{64} 16 = x$

Solve each of the following equations for x :

 $\log_4 x = \frac{1}{2}$ 2 $x = 4^{\frac{1}{2}} =$ √ $4 = 2.$ $\log_{x} 27 = 3$ $x^3 = 27 \rightarrow x = 27^{\frac{1}{3}} = \sqrt[3]{27} = 3.$ $log_{64} 16 = x$ $64^{x} = 16$ $(2^6)^x = 2^4$ $6x = 4$ since $b^x = b^y$ implies $x = y \rightarrow x = \frac{2}{3}$ 3

Rewrite each of the following expressions in $\log_5 2$ and $\log_5 3$:

 $log_5 \frac{5}{3}$ 3

$$
\log_5 \frac{5}{3}
$$

$$
\log_5 \frac{5}{3} = \log_5 5 - \log_5 3 = 1 - \log_5 3
$$
 since $\log_b b = 1$.

$$
\log_5 \frac{5}{3} = \log_5 5 - \log_5 3 = 1 - \log_5 3
$$
 since $\log_b b = 1$.

$$
\log_5 64
$$

$$
\log_5 64 = \log 52^6 = 6 \log_5 2
$$
.

$$
\log_5 \frac{5}{3}
$$
\n
$$
\log_5 \frac{5}{3} = \log_5 5 - \log_5 3 = 1 - \log_5 3
$$
\nsince
$$
\log_b b = 1.
$$
\n
$$
\log_5 64
$$
\n
$$
\log_5 64 = \log 52^6 = 6 \log_5 2.
$$
\n
$$
\log_5 36
$$

$$
\log_5 \frac{5}{3}
$$
\n
$$
\log_5 \frac{5}{3} = \log_5 5 - \log_5 3 = 1 - \log_5 3
$$
\n
$$
\log_5 64
$$
\n
$$
\log_5 64 = \log 52^6 = 6 \log_5 2.
$$
\n
$$
\log_5 36
$$
\n
$$
\log_5 36 = \log_5 2^2 \cdot 3^2
$$

$$
= \log_5 2^2 + \log_5 3^2
$$

$$
= 2 \log_5 2 + 2 \log_5 3
$$

Example 4c: Proving logarithms

Prove the equality rule

If $\log_b x = \log_b y$, then $x = y$.

Example 4c: Proving logarithms

Prove the equality rule

If $\log_b x = \log_b y$, then $x = y$.

Let $X = \log_b x$ and $Y = \log_b y$. Then, by definition, $b^X = x$ and $b^Y = y$. Therefore, if $\log_b x = \log_b y$, then $x = y$, so that:

$$
b^X = b^Y
$$

$$
x = y
$$

Example 4c: Proving logarithms (continued)

Prove the product rule

If $\log_b xy = \log_b x + \log_b y$.

Example 4c: Proving logarithms (continued)

Prove the product rule

If $\log_b xy = \log_b x + \log_b y$.

$$
\log_b x + \log_b y = X + Y
$$

= $\log_b b^{X+Y}$
= $\log_b b^X b^Y$
= $\log_b xy$

For $x > 0$, $y = ln(x)$ iff $e^y = x$

The 'natural logarithm' $ln(x)$ has the logarithmic base e.

For $x > 0$, $y = ln(x)$ iff $e^y = x$

The 'natural logarithm' $ln(x)$ has the logarithmic base e.

Remarkable values

$$
ln(1) = c
$$
 such as $e^c = 1 \rightarrow$ since $e^0 = 1$, $ln(1) = 0$.

$$
ln(e) = c
$$
 such as $e^c = e \rightarrow$ since $e^1 = e$, $ln(e) = 1$.

Solving capabilities

e.g. Let a super-quick exponential $e^{20x} = 3$.

For $x > 0$, $y = ln(x)$ iff $e^y = x$

The 'natural logarithm' $ln(x)$ has the logarithmic base e.

Remarkable values

$$
ln(1) = c
$$
 such as $e^c = 1 \rightarrow$ since $e^0 = 1$, $ln(1) = 0$.

$$
ln(e) = c
$$
 such as $e^c = e \rightarrow$ since $e^1 = e$, $ln(e) = 1$.

Solving capabilities

e.g. Let a super-quick exponential $e^{20x} = 3$. Taking the natural log on both sides: $ln(3) = ln(e^{20x}) = 20x$ \rightarrow x can be computed as $\frac{ln(3)}{20} \approx .05$

For $x > 0$, $y = ln(x)$ iff $e^y = x$

The 'natural logarithm' $ln(x)$ has the logarithmic base e.

Remarkable values

$$
ln(1) = c
$$
 such as $e^c = 1 \rightarrow$ since $e^0 = 1$, $ln(1) = 0$.

$$
ln(e) = c
$$
 such as $e^c = e \rightarrow$ since $e^1 = e$, $ln(e) = 1$.

Solving capabilities

e.g. Let a super-quick exponential $e^{20x} = 3$. Taking the natural log on both sides: $ln(3) = ln(e^{20x}) = 20x$ \rightarrow x can be computed as $\frac{ln(3)}{20} \approx .05$

$y = \ln(x)$ with $x > 0$

Following the (linear) increase in $ln(x)$ to track the (exponential) increase of e^x allows to model a wide range of nonlinear processes.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

Solving A:
$$
Q(0) = 15 \rightarrow Ae^0 = A = 15
$$

\nSolving k: $Q(10) = 9 \rightarrow 9 = 15e^{-10k} \rightarrow \frac{3}{5} = e^{-10k}$
\n $\ln \frac{3}{5} = -10k \rightarrow k = -\frac{\ln 3/5}{10} \approx .05$

Exponential function for population density: $Q(x) = 15e^{-0.05x}$.

The population density at the centre of a city is 15,000 inhabitants. It then drops to 9,000 at a distance of 10 miles from the centre. Express population as a function of the form $Q(x) = Ae^{-kx}$ where x is the distance in miles from the centre.

Solving A:
$$
Q(0) = 15 \rightarrow Ae^0 = A = 15
$$

\nSolving k: $Q(10) = 9 \rightarrow 9 = 15e^{-10k} \rightarrow \frac{3}{5} = e^{-10k}$
\n $\ln \frac{3}{5} = -10k \rightarrow k = -\frac{\ln 3/5}{10} \approx .05$

Exponential function for population density: $Q(x) = 15e^{-0.05x}$.