Quantitative and Mathematical Methods Euro-American Campus · Sciences Po · Reims

Functions

François Briatte Level 1 Groups

Table of contents

¹ [Functions](#page-2-0)

Functions: What do we mean by $y = f(x)$?

Functions: Basic definitions

• Definition:

The real-valued function $f : x \rightarrow y \quad x, y \in \mathbb{R}$ is a rule that assigns *one* real number $y \in \mathbb{R}^1$ to each real number $x \in \mathbb{R}^1.$ \mathbb{R}^1 denotes the set of all real numbers from $-\infty$ to $+\infty$ on the real number line.

Functions: Basic definitions

Definition:

The real-valued function $f : x \rightarrow y \quad x, y \in \mathbb{R}$ is a rule that assigns *one* real number $y \in \mathbb{R}^1$ to each real number $x \in \mathbb{R}^1.$ \mathbb{R}^1 denotes the set of all real numbers from $-\infty$ to $+\infty$ on the real number line.

• Domain/Range:

Given $f: x \in X \rightarrow y \in Y$, the set X denotes the *domain* of the function and the set Y denotes its range (co-domain).

Functions: Basic definitions

• Definition:

The real-valued function $f : x \rightarrow y \quad x, y \in \mathbb{R}$ is a rule that assigns *one* real number $y \in \mathbb{R}^1$ to each real number $x \in \mathbb{R}^1.$ \mathbb{R}^1 denotes the set of all real numbers from $-\infty$ to $+\infty$ on the real number line.

• Domain/Range:

Given $f: x \in X \rightarrow y \in Y$, the set X denotes the *domain* of the function and the set Y denotes its range (co-domain).

• Euclidean space:

A function with n variables exists in the n-dimensional Euclidean space \mathbb{R}^n where each *n*-axis goes from $-\infty$ to $+\infty$.

Functions: Set notation

• Let X be a set:

 $x \in X$: the element x belongs to the set X. $x \notin X$: the element x does not belong to the set X. $X = \{\emptyset\}$: empty set.

Functions: Set notation

• Let X be a set:

 $x \in X$: the element x belongs to the set X. $x \notin X$: the element x does not belong to the set X. $X = \{\emptyset\}$: empty set.

• Important sets:

N: natural numbers

- R: real numbers
- \mathbb{Z} : integers

 $\mathbb{Q} = \{n/d : (n, d) \in \mathbb{Z} \text{ and } d \neq 0\}$: rational numbers

Functions: Set notation

• Let X be a set:

 $x \in X$: the element x belongs to the set X. $x \notin X$: the element x does not belong to the set X. $X = \{\emptyset\}$: empty set.

• Important sets:

N: natural numbers

- R: real numbers
- \mathbb{Z} : integers

 $\mathbb{Q} = \{n/d : (n, d) \in \mathbb{Z} \text{ and } d \neq 0\}$: rational numbers

• Interval notation:

 $[a, b] = \{x : x \in \mathbb{R} \text{ and } a \leq x \leq b: \text{ closed interval} \}$ $(a, b) = \{x : x \in \mathbb{R} \text{ and } a < x < b$: open interval

Functions: Relation to sets

• Let X and Y be sets:

$$
X = Y
$$
: the sets X and Y are equal.
\n
$$
X \subset Y
$$
: X is a subset of Y.
\n
$$
X \cap Y = \{x : x \in X \text{ and } x \in Y\}
$$
: intersection
\n
$$
X \cup Y = \{x : x \in X \text{ or } x \in Y\}
$$
: union

Functions: Relation to sets

• Let X and Y be sets:

$$
X = Y
$$
: the sets X and Y are equal.
\n
$$
X \subset Y
$$
: X is a subset of Y.
\n
$$
X \cap Y = \{x : x \in X \text{ and } x \in Y\}
$$
: intersection
\n
$$
X \cup Y = \{x : x \in X \text{ or } x \in Y\}
$$
: union

• Cartesian product:

The Cartesian product $X \times Y$ of two sets X and Y is the set of all ordered pairs (x, y) with $x, y \in \mathbb{R}$.

Ex. Let
$$
X = \{1, 2\}
$$
 and $Y = \{2, 4\}$.
Then $X \times Y = (1, 2), (1, 4), (2, 2), (2, 4)$.

Functions: Relation to sets

• Let X and Y be sets:

$$
X = Y
$$
: the sets X and Y are equal.
\n
$$
X \subset Y
$$
: X is a subset of Y.
\n
$$
X \cap Y = \{x : x \in X \text{ and } x \in Y\}
$$
: intersection
\n
$$
X \cup Y = \{x : x \in X \text{ or } x \in Y\}
$$
: union

• Cartesian product:

The Cartesian product $X \times Y$ of two sets X and Y is the set of all ordered pairs (x, y) with $x, y \in \mathbb{R}$.

Ex. Let
$$
X = \{1, 2\}
$$
 and $Y = \{2, 4\}$.
Then $X \times Y = (1, 2), (1, 4), (2, 2), (2, 4)$.

• In more general terms:

Let X and Y be sets. The relation R from X to Y is a subset of $X \times Y$ and is written xRy if $(x, y) \in R$.

Functions: Terminology

• Functions as mappings of sets:

The basic point of a function is to provide a 'rule of correspondence' between two sets: the element $x \in X$ is the **input** of the function, which produces the **output** $y \in Y$.

Functions: Terminology

• Functions as mappings of sets:

The basic point of a function is to provide a 'rule of correspondence' between two sets: the element $x \in X$ is the **input** of the function, which produces the **output** $y \in Y$.

• Functions as dependence:

Using the function $f : x \rightarrow y$, we might choose to express the relationship between two terms x and y as a *dependence* of y upon x. We might later say that x **predicts** y .

Functions: Terminology

• Functions as mappings of sets:

The basic point of a function is to provide a 'rule of correspondence' between two sets: the element $x \in X$ is the **input** of the function, which produces the **output** $y \in Y$.

• Functions as dependence:

Using the function $f : x \rightarrow y$, we might choose to express the relationship between two terms x and y as a *dependence* of y upon x. We might later say that x **predicts** y .

• Back to domains:

Let X and Y be sets. A function $f: X \rightarrow Y$ is a relation from its **domain** X to its **codomain** Y. The set $Y = f(X)$ can be written as $\{f(x): x \in X\}$ and is the **image** (or **range**) of f.

Functions: Examples

Functions: Example

• Model of market commodity:

Demand function: $D(x) = p$ where p is the price at which each unit of commodity x sells. **Supply function:** $S(x) = p$ where p is the price at which units of x are effectively sold. How do these functions behave in economic view?

Functions: Example

• Model of market commodity:

Demand function: $D(x) = p$ where p is the price at which each unit of commodity x sells. **Supply function:** $S(x) = p$ where p is the price at which units of x are effectively sold. How do these functions behave in economic view?

Functions: Example

• Model of market commodity:

Demand function: $D(x) = p$ where p is the price at which each unit of commodity x sells. **Supply function:** $S(x) = p$ where p is the price at which units of x are effectively sold. How do these functions behave in economic view?

• Model of market profit: **Revenue function:** $R(x) = x \cdot p(x)$, which stands for (number of units sold) \times (price per unit). Cost function: $C(x)$ Profit function:

$$
P(x) = R(x) - C(x) = x \cdot p(x) - C(x)
$$

• Assume the following commodity pricing situation:

$$
p(x) = -.27x + 51C(x) = 2.23x^2 + 3.5x + 85
$$

Find $R(x)$ and $P(x)$.

• Assume the following commodity pricing situation:

$$
p(x) = -.27x + 51C(x)
$$
 = 2.23x² + 3.5x + 85
Find $R(x)$ and $P(x)$.

• Solution 1:

$$
R(x) = x \cdot p(x) = -.27x^2 + 51x
$$

\n
$$
P(x) = R(x) - C(x) = (-.27x^2 + 51x) - (2.23x^2 + 3.5x + 85)
$$

\n
$$
\Rightarrow P(x) = -2.5x^2 + 47.5x - 85
$$

• Following up on Example 1:

$$
P(x) = -2.5x^2 + 47.5x - 85
$$
 dollars

At what values of x is production profitable?

• Following up on Example 1:

$$
P(x) = -2.5x^2 + 47.5x - 85
$$
 dollars

At what values of x is production profitable?

• Solution 2:

$$
P(x) = -2.5x2 + 47.5x - 85
$$

= -2.5(x² - 19x + 34)
= -2.5(x - 2)(x - 17)

Production is profitable if $P(x) > 0$. $P(x) > 0$ only if $(x - 2)(x - 17)$ is negative, i.e. when $x - 2 > 0$ and $x - 17 < 0$. Production is profitable if $2 < x < 17$.

• Suppose the following: Fixed cost function:

$$
C(q) = q^3 - 30q^2 + 500q + 200
$$

Compute the production cost of 10 units.

• Suppose the following: Fixed cost function:

$$
C(q) = q^3 - 30q^2 + 500q + 200
$$

Compute the production cost of 10 units.

• Solution 3: $C(10) = (10)^3 - 30(10)^2 + 500(10) + 200 = 3,200.$

• Assume the following fixed cost function:

$$
C(q) = q^3 - 30q^2 + 500q + 200
$$

 $C(10) = 3,200$. Compute the production cost of the 10th unit.

• Assume the following fixed cost function:

$$
C(q) = q^3 - 30q^2 + 500q + 200
$$

 $C(10) = 3,200$. Compute the production cost of the 10th unit.

• Solution 4:

$$
C(10) = 3,200
$$

$$
C(9) = (9)^3 - 30(9)^2 + 500(9) + 200 = 2,999
$$

Marginal cost of 10th unit: $C(10) - C(9) = 201$.