Statistics: Hypothesis tests

- 1 Reminder: point estimation
- 2 Hypothesis tests
- 3 Significance tests

Reminder: point estimation

Sample definitions

- lacktriangle the population mean μ is a population parameter
- lacksquare the sample mean $ar{X}$ is a point estimate of μ
- we know the sample n and its mean \bar{X} , but we do not know μ and might not know the true population N

Sampling error

- \blacksquare sampling variation causes \bar{X} to vary
- the values of \bar{X} form a sampling distribution
- its standard deviation $\frac{\sigma}{\sqrt{N}}$ is the standard error of the mean (SEM), which is estimated from the sample by $\frac{s}{\sqrt{n}}$.

Standard normal distribution

Source: Diez et al. 2011

Standard normal distribution

Figure 4.10: The area between $-z^*$ and z^* increases as $|z^*|$ becomes larger. If the confidence level is 99%, we choose z^* such that 99% of the normal curve is between $-z^*$ and z^* , which corresponds to 0.5% in the lower tail and 0.5% in the upper tail: $z^* = 2.58$.

Generalization of the standard normal distribution

Central Limit Theorem (CLT)

For 'iid' (independent and identically distributed) random variables $X_1, X_2, ..., X_n$, the sampling distribution of the mean approximates a normal distribution as n > 30 increases.

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}\bar{X}_{i}-\mu\right) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^{2})$$

Law of Large Numbers (LLN)

$$\frac{X_1 + X_2 + \dots + X_n}{n} = \mu$$

Estimation of confidence intervals

Confidence intervals

If the sampling distribution is approximately normal, fractions of the point estimates are contained within the mean $\bar{X} \pm Z$ -scores:

- For a 95% CI: $\bar{X} 1.96 \cdot SEM, \bar{X} + 1.96 \cdot SEM$
- For a 99% CI: $\bar{X} 2.58 \cdot SEM, \bar{X} + 2.58 \cdot SEM$

The margin of error of the interval is $Z \cdot SEM$.

Accuracy trade-off

Wider intervals trade precision for additional confidence:

- A 95% CI is smaller but less reliable than a 99% CI.
- A 99% CI is larger but more reliable than a 95% CI.

Neither level of confidence can ensure that $\mu \in CI$.

Hypothesis tests with 95% Cls, H_0 and H_a

Comparison of means x and y

For two independent groups:

- 1 Hypothesize that $\bar{x} \neq \bar{y}$ at a given level of confidence
- **2** Compute the 95% CI for \bar{y} to assess the difference

The hypothesis will be tested against H_0 : $\bar{x} = \bar{y}$.

General logic of testing the null hypothesis H_0

- Proof by contradiction: the goal is the test is to reject H_0
- Type I error: rejecting H_0 while it is actually true
- Type II error: accepting H_0 while it is actually true

The alternative hypothesis H_a is tested against H_0 : $\bar{x} = \bar{y}$.

Average donations to political parties

- Group 1 (2008): $\bar{x} = 35$, other parameters unobserved
- Group 2 (2012): $\bar{y} = 45, s = 5, n = 100$

Average donations to political parties

- Group 1 (2008): $\bar{x} = 35$, other parameters unobserved
- Group 2 (2012): $\bar{y} = 45, s = 5, n = 100$
- 95% CI for $\bar{y} = 45 \pm 1.96 \cdot \frac{5}{\sqrt{100}} = [44.02, 45.98]$

There is strong evidence that $\bar{x} \neq \bar{y}$: we can reject H_0 .

Average donations to political parties

- Group 1 (2008): $\bar{x} = 35$, other parameters unobserved
- Group 2 (2012): $\bar{y} = 45, s = 5, n = 100$
- 95% CI for $\bar{y} = 45 \pm 1.96 \cdot \frac{5}{\sqrt{100}} = [44.02, 45.98]$

There is strong evidence that $\bar{x} \neq \bar{y}$: we can reject H_0 .

Average support for income equality

- Group 1 (Whites): $\bar{X}_1 = 75, s = 10, N = 900$
- Group 2 (Blacks): $\bar{X}_2 = 85, s = 45, N = 81$

Average donations to political parties

- Group 1 (2008): $\bar{x} = 35$, other parameters unobserved
- Group 2 (2012): $\bar{y} = 45, s = 5, n = 100$
- 95% CI for $\bar{y} = 45 \pm 1.96 \cdot \frac{5}{\sqrt{100}} = [44.02, 45.98]$

There is strong evidence that $\bar{x} \neq \bar{y}$: we can reject H_0 .

Average support for income equality

- Group 1 (Whites): $\bar{X}_1 = 75, s = 10, N = 900$
- Group 2 (Blacks): $\bar{X}_2 = 85, s = 45, N = 81$
- 95% CI for $\bar{X}_1 \approx$ [74.3,75.6]; 95% CI for $\bar{X}_2 \approx$ [75,95]

There is no strong evidence that $\bar{X}_1 \neq \bar{X}_2$: we should retain H_0 .

Contextual Type I and II Errors

Type I Error in judicial trials

"Last year executed man proven innocent by DNA evidence."

- H_0 : presumption of innocence
- H_a : ... until proven guilty (H_0 wrongly rejected)

Type II Error in child protection

- "Violent father beats children after being released from custody."
 - H_0 : parents considered responsible
 - H_a : ... until proven abusive (H_0 wrongly retained)

Formal significance tests

1. Write up the null hypothesis as an equality

- \blacksquare H_0 : $\mu = 0$, or $\bar{x} \bar{y} = 0$, or $\bar{X} = k$, ...
- One-sided hypothesis test: $H_a: \mu > 0$, or $H_a: \mu < 0$, ...
- Two-sided hypothesis test: $H_a: \mu \neq 0$, or $\bar{X} \neq k$, ...

2. Declare a level of statistical significance

- $\alpha = 0.05$ for a 95% CI ($Z = 1.96 \approx 2$)
- $\alpha = 0.01$ for a 99% CI ($Z = 2.58 \approx 2.5$)
- Verify whether $Pr(H_0) < \alpha$ so that you can reject H_0

 $Pr(H_0)$ is the *p*-value of the test.

One-sided significance test

Figure 4.16: To identify the p-value, the distribution of the sample mean is considered as if the null hypothesis was true. Then the p-value is defined and computed as the probability of the observed \bar{x} or an \bar{x} even more favorable to H_A under this distribution.

Source: Diez et al. (2011)

Two-sided significance test

Figure 4.18: \mathcal{H}_A is two-sided, so both tails must be counted for the p-value.

Source: Diez et al. (2011)

Income gap

What is H_0 for a comparison of average income between males and females?

Income gap

What is H_0 for a comparison of average income between males and females? $H_0: \bar{X}_{males} = \bar{X}_{females}$

Income gap

What is H_0 for a comparison of average income between males and females? $H_0: \bar{X}_{males} = \bar{X}_{females}$

Sleeping time

What is H_a for a comparison of average sleeping time between night workers, who suffer from broken sleeping patterns, and day workers?

Income gap

What is H_0 for a comparison of average income between males and females? $H_0: \bar{X}_{males} = \bar{X}_{females}$

Sleeping time

What is H_a for a comparison of average sleeping time between night workers, who suffer from broken sleeping patterns, and day workers? $H_a: \bar{X}_{nightworkers} < \bar{X}_{dayworkers}$

Income gap

What is H_0 for a comparison of average income between males and females? $H_0: \bar{X}_{males} = \bar{X}_{females}$

Sleeping time

What is H_a for a comparison of average sleeping time between night workers, who suffer from broken sleeping patterns, and day workers? $H_a: \bar{X}_{nightworkers} < \bar{X}_{dayworkers}$

Work fun

What is H_a for a comparison of average employee productivity with and without a firewall to block Facebook access?

Income gap

What is H_0 for a comparison of average income between males and females? $H_0: \bar{X}_{males} = \bar{X}_{females}$

Sleeping time

What is H_a for a comparison of average sleeping time between night workers, who suffer from broken sleeping patterns, and day workers? $H_a: \bar{X}_{nightworkers} < \bar{X}_{dayworkers}$

Work fun

What is H_a for a comparison of average employee productivity with and without a firewall to block Facebook access? $H_a: \bar{X}_{withoutFacebook} > \bar{X}_{withFacebook}$

Sanity checks

Sample requirements

- The data must come from a simple random sample
- The observations should be independent
- The observations should be normally distributed
- Sample size should be approximately at least N = 30

Strong skewness or clear outliers will violate normality at low N. Randomness and independence might fail for other reasons.

Rejecting H₀

- $Pr(H_a) \neq 1 Pr(H_0)$: you <u>never</u> get to measure $Pr(H_a)$
- Statistical significance does not imply <u>substantive</u> significance

Sample size

Determining a margin of error

$$Z \cdot \frac{\sigma}{\sqrt{N}} \le ME$$

Example: average number of sexual partners

How many people should we sample from a population where the number of sexual partners has an unknown mean and a standard deviation of 5 if we want a margin of error around 2 partners at 95% confidence?

Sample size

Determining a margin of error

$$Z \cdot \frac{\sigma}{\sqrt{N}} \leq ME$$

Example: average number of sexual partners

How many people should we sample from a population where the number of sexual partners has an unknown mean and a standard deviation of 5 if we want a margin of error around 2 partners at 95% confidence?

$$1.96 \cdot \frac{\sigma}{\sqrt{N}} \le 2 \quad 1.96 \cdot \frac{5}{2} \le \sqrt{N} \quad (1.96 \cdot \frac{5}{2})^2 \le N \quad N \ge 25$$

Reading significance tests

What the test is about

- Comparison of means: $\bar{X}_{females} \bar{X}_{males}$
- Comparison of proportions: $\hat{p}_{Blacks} \hat{p}_{White}$
- H_0 and H_a : equality, increase or decrease among groups
- Means and difference given with confidence intervals

How to read the p-value

- Comparison of means: *t*-test
- Comparison of proportions: proportions test
- Two-tailed test: H_a : difference $\neq 0$
- One-tailed test: H_a : difference > 0 or H_a : difference < 0

. ttest bmi if raceb==3 & age < 35, by(female)

Two-sample t test with equal variances

diff = mean(Male) - mean(Female)

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	731 906	27.60214 26.70284	.1622325 .1740403	4.386283 5.238583	27.28364 26.36127	27.92064 27.04441
combined	1637	27.10442	.1209956	4.895466	26.86709	27.34174
diff		.899302	.2424424		.4237716	1.374832

Ho: diff =
$$0$$
 degrees of freedom = 1635

t = 3.7093

. ttest bmi if raceb==3 & age < 35, by(female)</pre>

Two-sample	e t test wi	ith equal vari	ances		e of the null	hypothesis
Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	731 906	27.60214 26.70284	.1622325 .1740403	4.886283 5.238583	27.28364 26.36127	27.92064 27.04441
combined	1637	27.10442	.1209956	4.895466	26.86709	27.34174
diff		.899302	.2424424		.4237716	1.374832
<pre>diff = mean(Male) - mean(Female) Ho: diff = 0</pre>				degrees	t s of freedom	
Ha: diff < 0 Ha: diff != 0 $Pr(T < t) = 0.9999$ $Pr(T > t) = 0.$						iff > 0) = 0.0001

difference in means

Reading guide for a t-test (with Stata software)

Top table

- Group 1 (N = 731 males) has a mean BMI of 27.6
- Group 2 (N = 906 females) has a mean BMI of 26.7
- diff is the difference in means $\delta_{males-females} = .89$
- Columns show the standard error (Std. Err.), standard deviation (Std. Dev.) and 95% confidence intervals

How to read the p-value

- Central *p*-value for H_0 : $\delta = 0$: 0.0002
- H_0 is very unlikely (p < 0.01): reject the null hypothesis

. prtest torture in 2000/2800, by(female)

ions

				Cilia cci ii		
Variable	Mean	Std. Err.	z	P> z	[95% Conf.	Interval]
Male Female	.725 .771261	.0235334 .0227454			.6788754 .7266808	.7711246 .8158412
diff	046261 under Ho:	.0327288	-1.41	0.159	1104082	.0178862

z = -1.4091

360

341

Ho:
$$diff = 0$$

Ha: diff < 0
$$Pr(Z < z) = 0.0794$$

Ha: diff > 0
$$Pr(Z > z) = 0.9206$$

Male: Number of obs =

Female: Number of obs =

4
$$Pr(|Z| < |z|) = 0.1588$$

. prtest torture in 2000/2800, by(female)

Two-sample te	ts		Number of obs			
Variable	Mean	Std. Err.	z	P> z	[95% Conf.	Interval]
Male Female	.725 .771261	0235334 0227454			.6788754 .7266808	.7711246 .8158412
diff	046261 under Ho.	.0327288 .0328295	-1.41	0.159	1104082	.0178862

Homework

Read CK-12 handbook ch. 8 for the exam

and enjoy the rest of your semester.

Note: final stats exam will cover confidence intervals (Ch. 7) and hypothesis tests (Ch. 8). Histograms are part of the topic.